
J Sched (2015) 18:623–630
DOI 10.1007/s10951-015-0430-4

An efficient algorithm for semi-online multiprocessor scheduling
with given total processing time

Hans Kellerer1 · Vladimir Kotov2 · Michaël Gabay3

Published online: 25 April 2015
© Springer Science+Business Media New York 2015

Abstract We consider a semi-online multiprocessor
scheduling problem with a given a set of identical machines
and a sequence of jobs, the sum of whose processing times
is known in advance. The jobs are to be assigned online
to one of the machines and the objective is to minimize
the makespan. The best known algorithm for this problem
achieves a competitive ratio 1.6 (Cheng et al. in Theor Com-
put Sci 337:134–146, 2005). The best known lower bound
is approximately 1.585 (Albers and Hellwig in Theor Com-
put Sci 443:1–9, 2012) if the number of machines tends to
infinity. We present an elementary algorithm with competi-
tive ratio equal to this lower bound. Thus, the algorithm is
best possible if the number of machines tends to infinity.

Keywords Semi-online scheduling · Competitive
analysis · Multiprocessor scheduling

B Hans Kellerer
hans.kellerer@uni-graz.at

Vladimir Kotov
kotovVM@bsu.by

Michaël Gabay
michael.gabay@g-scop.grenoble-inp.fr

1 Institut für Statistik und Operations Research, Universität
Graz, Universitätsstraße 15, 8010 Graz, Austria

2 Faculty of Applied Mathematics and Computer Science,
Belarusian State University, Nezavisimosti Ave. 4,
220030 Minsk, Belarus

3 Grenoble-INP/UJF-Grenoble 1/CNRS, G-SCOP UMR5272,
38031 Grenoble, France

1 Introduction

The well-known classical multiprocessor scheduling prob-
lem is a fundamental and well-investigated scheduling
problem both in the offline and the online setting. A set
of n independent jobs is to be processed on m parallel,
identical machines in order to minimize the makespan.
The offline scenario of the problem is strongly NP-hard
but can be approximated efficiently (see e.g., Hochbaum
and Shmoys 1987 for a polynomial time approximation
scheme).

In the online scenario each job must be immediately and
irrevocably assigned to one of the machines without any
knowledge on future jobs. This problem was first investi-
gated by Graham (1966, 1969) who showed that the list
scheduling algorithm has a performance ratio of exactly
2 − 1/m. It is also shown that this algorithm is best pos-
sible for m ≤ 3 (Faigle et al. 1989). A long list of improved
algorithms has since been published. The best heuristic
known for this problem is due to Fleischer and Wahl (2000).
They designed an algorithm with competitive ratio smaller
than 1.9201 when the number of machines tends to infin-
ity. The best lower bound is 1.88 and is due to Rudin
(2001).

Recent research has focused on scenarios between offline
and online scenarios where the online constraint is relaxed
but no full information on the input data is available. For a
survey on recent advances we refer to the paper by Albers
(2013). In this paper we consider the online multiprocessor
scheduling with the additional assumption that the sum of
processing times is given in advance. The resulting problem
is denoted as the known total processing time scheduling
problem.

A related semi-online problem has been introduced by
Azar and Regev (2001), who labeled it as the online bin

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0430-4&domain=pdf

624 J Sched (2015) 18:623–630

stretching problem. A sequence of items is given and we
know that these items can be packed into m bins of unit
size. The items are to be assigned online to the bins and
the aim is to minimize the stretching factor of the bins,
i.e., to stretch the sizes of the bins as least as possible
such that all items fit in the bins. Thus, the bin stretch-
ing problem can be interpreted as a semi-online scheduling
problem where, instead of the total processing time, even
the value of the optimal makespan is known in advance.
Consequently, any algorithm for the known total processing
time scheduling problem works also for the bin stretching
problem, i.e., it achieves at least the same competitive ratio.
For the bin stretching problem, a sophisticated proof for an
algorithm with stretching factor 1.625 was given by Azar
and Regev (2001). Kellerer and Kotov (2013) proposed an
algorithm with stretching factor 11/7 ≈ 1.571 by using
techniques of grouping bins into batches. The latest algo-
rithm is due to Böhm et al. (to be published). They give an
algorithm for online bin stretching with a stretching factor
of 1.5 for any number of bins. They also show a special-
ized algorithm for three bins with a stretching factor of
11/8 = 1.375.

In a previous paper (Kellerer et al. 1997), among three
models, the semi-online model in consideration is also inves-
tigated here and an algorithm with performance ratio 4/3
for the known total processing time scheduling problem on
two machines was given. This bound is best possible for
m = 2. In Cheng et al. (2005) presented an algorithm with
performance ratio 1.6 for the known total processing time
scheduling problem for an arbitrary number of machines.
Moreover, they established a lower bound of 1.5 for m ≥ 6
machines. Angelelli et al. (2004) gave a deterministic algo-
rithm with performance ratio (1 + √

6)/2 ≈ 1.725 and
showed a lower bound of 1.565. Recently, Albers and Hell-
wig (2012) developed an improved lower bound showing that
no deterministic semi-online algorithm for the known total
processing time scheduling problem can attain a competitive
ratio smaller than approximately 1.585whenm tends to infin-
ity.Moreover, they give a simple algorithmwith performance
ratio 1.75.

In this paper we will present an algorithm with compet-
itive ratio approximately 1.585, which is equal to the lower
bound of Albers and Hellwig. Thus, our algorithm is best
possible if m tends to infinity. Our algorithm is an adapta-
tion of the recently published algorithm for the bin stretching
problem by Kellerer and Kotov (2013): jobs and machines
are classified and the algorithm runs in two phases. In the
first phase, jobs are assigned to the machines depending on
jobs and machines classes. In the second phase we distin-
guish two cases depending on the structure of the machines
after Phase 1 and for each case a separate algorithm is pre-
sented.

2 Problem definition and notation

We are given m identical machines and a sequence of jobs
1, . . . , n with processing times p1, . . . , pn . Any of the jobs
is to be assigned online to one of the machines. We assume
that the sum S = ∑n

j=1 p j of the jobs processing times is
given in advance. Without loss of generality, S = m. The
objective is to minimize the makespan. Since our algorithm
is strongly related to the bin stretching algorithm in Kellerer
and Kotov (2013), we will usually speak of bins B1, . . . , Bm

instead of machines and of items with weights p j instead of
jobs with processing times p j .

Let R be a set of items. The weight of R is defined as∑
j∈R p j , and is denoted by w(R). The weight of a bin B

is defined as the total weight of all items assigned to B, and
is denoted by w(B). When we speak of time j, we mean the
state of the system just before item j is assigned.

Let α be the positive root of the function f (x) = 4x3 +
4x2 − 2x − 1. We will show that the competitive ratio of our
algorithm is equal to 1+α ≈ 1.58504. Throughout the paper
we will use several times the equation

1

2α
= (1 + α)2α − 1. (1)

The items are divided into several classes. Items with
weights in (0, α ≈ 0.585] are called small, items in (α, 1

2α ≈
0.8546] are calledmedium, and items larger than 1

2α are called
large. Moreover, small items with weights less or equal than
α
2 ≈ 0.2925 are called tiny.
A bin B with w(B) ∈ (0, α

2 ≈ 0.2925] is called tiny,
for w(B) ∈ (0, α] it is called small, for w(B) ∈ (α, 1

2α]
it is called medium, for w(B) ∈ (1

2α , 1] it is called big,
and for w(B) > 1 it is called huge. Big and huge bins are
also denoted as large. Notice that each tiny bin is small. If
B contains a large item, it is called a large item bin. The
number of empty bins, tiny bins, small bins, medium bins,
and big bins is abbreviated by eB, tB, sB, mB, and bB,
respectively. When a bin is closed, no more items can be
assigned to that bin. Otherwise, it is called open. If we want
to specify the time j , we write eB j , w j (B) instead of eB,
w(B), respectively. The definitions of item and bin classes
are depicted in Tables 1 and 2.

We denote by LB a lower bound for the optimalmakespan
which is recalculated throughout the algorithm. Since S = m,
we have LB ≥ 1. Each bin of the algorithm has a capacity

Table 1 Item classes

Item class Tiny Small Medium Large

Interval (0, α
2] (0, α] (α, 1

2α] (1
2α ,∞]

123

J Sched (2015) 18:623–630 625

Table 2 Bin classes
Bin class Empty bin eB Tiny bin tB Small bin sB Medium bin mB

Definition w(B) = 0 0 < w(B) ≤ α
2 0 < w(B) ≤ α α < w(B) ≤ 1

2α

Bin class Big bin bB Huge bin Large bin Large item bin

Definition 1
2α < w(B) ≤ 1 1 < w(B) 1

2α < w(B) B contains a large item

of (1 + α)LB and we say that item j fits into a bin B, if
w(B) + p j ≤ (1 + α)LB.

3 Description of the algorithm and proof
of the upper bound

In this section we will present the algorithm for the known
total processing time scheduling problem with competitive
ratio 1 + α ≈ 1.585. This algorithm is split into two parts.
The first part (called Phase 1) is an adaptation of Phase 1 for
the bin stretching problem as described inKellerer andKotov
(2013). It runs until the number of empty bins is around one
third of the number of small bins.

Denote by q1, . . . , q j the weights of the items at time j
sorted in non-increasing order, i.e., q1 ≥ q2 ≥ · · · ≥ q j . If
j < m + 1, set q j+1 = q j+2 = · · · = qm+1 = 0. Then,
an obvious lower bound LB for the optimal makespan is
given by

LB = max{1, q1, qm + qm+1}. (2)

We will use the following observation several times:

Observation 1 Let B be a small or an empty bin. Then any
item j fits in bin B.

Proof From p j ≤ q1 ≤ LB follows with LB ≥ 1 that
w(B) + p j ≤ α + LB ≤ (1 + α)LB. �	

A formal description of Phase 1 of the algorithm is
depicted in Fig. 1. Note that the numbering reflects the prior-

ity rules for the assignment of item j , i.e., a packing option
is skipped if no bin exists which fulfills the related condition
and the next option is checked.

Initially, the lower bound LB is set to 1 and it is recal-
culated each time when a new item j arrives. Moreover, all
bins are open in the beginning.

The following lemma lists some simple properties of
the bins after Phase 1. The proof of the lemma is a slight
adaptation of the proof of Lemma 1 in Kellerer and Kotov
(2013).

Lemma 1 During any time of Phase 1 of the algorithm, the
following properties hold:

(a) The weights of all bins are smaller than or equal to (1+
α)LB.

(b) Medium bins consist of exactly one medium item.
(c) There is at most one tiny bin, i.e., tB ≤ 1.
(d) All large bins are large item bins.
(e) All closed bins are large item bins.
(f) sB = 0 or bB = 0.
(g) sB < 3eB, while Phase 1 does not stop.

Proof In Step 1.1 items are only assigned if they fit in the
bin. In the other steps item j is assigned to an empty bin or
to a small bin. By Observation 1 each item fits in a small or
empty bin. This shows property (a).

Since medium bins can only be constructed by assigning
a medium item to an empty bin, (b) follows.

Fig. 1 Algorithmic description
of Phase 1 Phase 1 of the Algorithm

Let j be the current item to be assigned. Recalculate LB according to (2).

1. j is small:
1.1 Put j in a large item bin B if j fits in B, i.e., if w(B) + pj ≤ (1 + α)LB.
1.2 Put j in a small bin B if B remains small, i.e., w(B) + pj ≤ α.
1.3 Put j in an empty bin.

2. j is medium:
2.1 Put j in an empty bin.

3. j is large:
3.1 Put j in the small bin with largest weight.
3.2 Put

s e

j in an empty bin.

Stopping condition: If
B = 3 B + λ, 0 ≤ λ ≤ 3, (3)

close all huge bins and goto Phase 2.

123

626 J Sched (2015) 18:623–630

Given a tiny bin B and a tiny item j , thenw(B)+ p j ≤ α.
Then, priority rule 1.2 guarantees that tB ≤ 1 and (c) holds.

Large bins can only be constructed by assigning large
items to small bins or empty bins. Assertion (d) follows. All
closed bins are huge. Thus, (d) implies (e).

We prove assertions (f) and (g) by induction. Assume (f)
is true at time j . If there are neither small bins nor big bins
at time j , then sB j+1 = 0 or bB j+1 = 0.

Assume now that there are small bins, but no big bin at
time j . If bB j+1 = 0, the assertion is true. If bB j+1 = 1,
item j is large and it must be assigned to a tiny bin since
otherwise the new weight of the bin would be larger than 1.
By definition, j is assigned to a small bin with largest weight.
Hence, the set of small bins at time j consists of a single tiny
bin by (c). Thus, sB j+1 = 0.

Finally, assume that there are big bins, but no small bin at
time j . If sB j+1 = 0, the assertion is true. If sB j+1 = 1, item
j is small. By (d) each big bin is a large item bin. Because of
bB j > 0 there are always big bins in which the small item j
fits. According to the priority rules for small items, it cannot
occur that sB j+1 > 0.

Assertion (g) is correct for j = 1, i.e., before any item
is assigned. Assume it is true at times 1, . . . , j and Phase 1
does not stop after assigning item j − 1, i.e., condition (3)
does not hold. This means sB j < 3eB j by the induction
hypothesis. After the assignment of item j the number sB j

can increase by at most 1 and eB j can decrease by at most
1. Hence,

sB j+1 ≤ sB j + 1 ≤ 3eB j ≤ 3(eB j+1 + 1) = 3eB j+1 + 3.

(4)

If the stopping condition (3) holds, there is nothing to prove.
If the stopping condition (3) does not hold, we have either
sB j+1 > 3eB j+1+3 or sB j+1 < 3eB j+1. The first inequal-
ity is excluded by (4) and assertion (g) follows. �	

Notice that Phase 1 of the algorithm is well defined: due
to Lemma 1(g) Phase 1 is only running while eB > 0, hence
items can be assigned to empty bins if necessary.

It is possible that all items are assigned already after
Phase 1. Of course, in this case, the upper bound holds.

By Lemma 1, after Phase 1, we can only have empty bins,
closed bins, and either only large item bins and medium
bins or only small bins (including at most one tiny bin) and
medium bins. We distinguish two cases for the algorithm.

First, consider the case sB = 0. The corresponding
phase of the algorithm is denoted as Phase 2a. Note that
from condition (3) we get 0 = 3eB + λ which implies
that there are no empty bins. Without loss of generality,
assume that the bins B1, . . . , Bk are open after Phase 1 and
the bins Bk+1, . . . , Bm are closed. Moreover, the open bins
shall be sorted in non-increasing order of their weights, i.e.,
w(B1) ≥ w(B2) ≥ · · · ≥ w(Bk). During Phase 2a any item
is assigned to the bin with largest weight. If it does not fit, it is
packed in the binwith the smallest weight. Afterward, the bin
with the largest weight is closed. Throughout the algorithm
the open bin with maximum weight is denoted by Bmax and
the open bin with minimum weight by Bmin, respectively. A
formal description of Phase 2a of the algorithm is depicted
in Fig. 2.

There is an index r ′ ≥ 1 such that the bins B1, . . . , Br ′−1

correspond to the bins which are closed in Step 3 of Phase 2a.
Moreover, there is an index r , r ′ ≤ r ≤ k, such that
the Bins Br+1, . . . , Bk correspond to the bins to which an
item is assigned in Step 4 of Phase 2a. If Step 2 is exe-
cuted, then bin Br is the last open bin to which an item
is assigned. Thus, each of the bins B1, . . . , Br ′−1 corre-
sponds to bin Bmax when it is closed, and each of the bins
Br+1, . . . , Bk corresponds to bin Bmin when it is closed,
respectively.

Lemma 2 The following properties hold for Phase 2a.

(a) At the beginning of Phase 2a, each bin contains an item
with weight greater than α.

(b) At least one large item is assigned to each of the bins
Br+1, . . . , Bk in Step 4 of Phase 2a. In particular, at
the end of Phase 2a, all bins Br+1, . . . , Bm contain a
large item.

(c) The weights of all closed bins are greater than 1.
(d) At the end of Phase 2a, all bins have weights smaller than

or equal to (1 + α)LB.

Fig. 2 Algorithmic description
of Phase 2 with no small bins Phase 2a of the Algorithm: sB = 0

Initialization: Set s = k (number of open bins).

Iteration j:

1. Let j be the current item to be assigned. Recalculate LB according to (2).
2. If s = 1, assign the remaining items to the last open bin and stop.
3. Put j in bin Bmax if j fits in it. If j is put in bin Bmax and w(Bmax) + pj > 1, close bin

Bmax and set s = s − 1.
4. If j does not fit in Bmax, put j in bin Bmin, close bin Bmin and set s = s − 1.

123

J Sched (2015) 18:623–630 627

Proof Consider the beginning of Phase 2a when sB = 0
holds after Phase 1.

ByLemma 1(b), (d) allm bins contain at least onemedium
or large item at the beginning of Phase 2. This shows (a).

Since a bin Bmax is closed if its weight is greater than
1, the weight of any open bin Bmax is at most 1. Thus, any
small item i fits in the open Bmax. Now consider an item
i which is assigned to one of the bins Br+1, . . . , Bk during
Phase 2a. Consequently, pi > α. By (a) there are m + 1
items with weight greater than α and we conclude with (2)
that LB ≥ qm + qm+1 ≥ 2α. Since i does not fit in Bmax,
we get with (1)

1 + pi ≥ wi (Bmax) + pi > (1 + α)LB

≥ (1 + α)2α = 1 + 1

2α
.

This implies pi > 1
2α , i.e., item i is large. Hence all bins

Br+1, . . . , Bk contain a large item and by definition of the
algorithm only one item is put in these bins during Phase 2a.
Recall that by Lemma 1(e) each bin Bk+1, . . . , Bm contains a
large item at the beginning of Phase 2a. This proves assertion
(b).

Bins closed at the end of Phase 1 and bins closed in Step 3,
serving as Bmax, are closed when their weights are greater
than 1. Bins closed in Step 4, i.e., bins Br+1, . . . , Bk , contain
an item with weight greater than α and, due to (b), a large
item. Thus, their weights are greater than α + 1/(2α) > 1.
This shows assertion (c).

Consider finally assertion (d). The bins Br+1, . . . , Bk are
closed in Step 4. Let Bλ, r +1 ≤ λ ≤ k, be closed by assign-
ing item j to it. Due to (b) item j is large. Bins Bλ+1, . . . , Bm

are closed before Bλ and contain a large item at time j
because of (b). Bin Bλ contains a medium or large item x
with weight px at time j . Recall that each bin contains a
medium or large item and bins were sorted in non-increasing
order at the beginning of Phase 2a.Moreover, by Lemma 1(b)
each medium bin consists of a single medium item at the
beginning of Phase 2b.

Thus, if x is medium, we conclude that all bins Bμ with
1 ≤ μ < λ, contain an item with weight not smaller than px
at time j . Hence, together with item j the weights of at least
m+1 items are not smaller than px . This implies LB ≥ 2px .
If x is large, there are together with item j at leastm+1 large
items. This implies LB > 1/α. Thus, we have shown

LB ≥ min

{

2px ,
1

α

}

. (5)

If x ismedium,we have byLemma1(b) that px = w j (Bλ)

and px ≤ 1
2α . By (5) we get px ≤ LB/2. Together with (1)

and LB ≥ p j we conclude that

p j + w j (Bλ) = p j + px ≤ LB + LB

2
= 3

2
LB.

If x is large, (5) implies that LB ≥ 1/α. We obtain from
LB ≥ p j that

p j +w j (Bmax)≤ LB+1=
(

1+ 1

LB

)

LB≤(1 + α)LB.

This shows that the weights of all bins Br+1, . . . , Bk are
smaller than or equal to (1 + α)LB.

Recall that bins B1, . . . , Br ′−1 are closed in Step 3. By
definition the weights of all bins closed in Step 3 are not
larger than (1 + α)LB. By Lemma 1(a) this is also true for
bins Bk+1, . . . , Bm .

It remains to prove (d) for bins B ′
r , . . . , Br . If r

′ < r , all
these bins have weight at most one. If r = r ′, bin Br is the
last open bin and the remaining items are assigned to it in
Step 2. Thus, by (c) the weights of all other bins are greater
than 1. Since the total weight sum is equal tom,w(Br) ≤ 1 at
the end of Phase 2a. This completes the proof of our Lemma.

�	
Now we treat Phase 2b. It deals with the case where there

are no big bins, i.e., the open bins are small (including atmost
one tiny bin), medium, or empty. Without loss of generality
we may assume that there is at least one small bin because
sB = 0 is considered in Phase 2a. By condition (3) there are
4k + λ empty or small bins after Phase 1 for some integer
k ≥ 0. Among these 4k + λ bins there are k empty bins and
the remaining 3k+λ bins are small. These bins are now par-
titioned into k so-called four-batches B1,B2, . . . ,Bk . Each
four-batch B consists of four bins B1, B2, B3, B4 where bins
B1, B2, B3 are small, and the fourth bin B4 is an empty bin.
If λ > 0, there is an additional batch Bk+1 of at most three
non-empty bins. By Lemma 1(c) there is at most one tiny bin.
This possibly existing tiny bin shall correspond to bin B1 of
four-batchB1. Therefore, wemay assume that all other small
bins are not tiny and have weight at least α/2. Set k′ = k+1,
if λ > 0 and k′ = k, otherwise.

The medium bins are denoted by M1, M2, . . . , M� and
shall be sorted in non-increasing order of their weights at
the beginning of Phase 2b, i.e., w(M1) ≥ w(M2) ≥ · · · ≥
w(M�). We call them briefly M-bins. Throughout Phase 2b
denote the open M-bin with maximum weight by Mmax, the
open M-bin with second largest weight by M2 and the open
M-bin with smallest weight by Mmin, respectively. If there
are only two M-bins, bins M2 and Mmin are identical.

For the assignment of items to batches, we will always
use First Fit, i.e., an item is assigned to the bin with smallest
index in a batch in which it fits. The algorithm tries to assign
an item j to the bins in the following order: Mmax, M2, an
open batch with smallest index if p j ≤ (1 + α)/2, an open
batch with largest index if p j > (1 + α)/2, Mmin.

123

628 J Sched (2015) 18:623–630

Fig. 3 Algorithmic description
of Phase 2 with no big bins Phase 2b of the Algorithm: bB = 0

Initialization: Set μ = (number of M -bins) and τ = k (number of open batches).

Iteration j:

1. Let j be the current item to be assigned. Recalculate LB according to (2).
2. μ ≥ 1, j fits in Mmax: assign j to Mmax. If wj(Mmax) + pj ≥ 1, close Mmax and set

μ = μ − 1.
3. μ ≥ 2, pj ≤ β: assign j to M2, close M2 and set μ = μ − 1.
4. τ ≥ 2, pj ≤ (1 + α)/2: let Bi be the open batch with smallest index. Assign j to Bi if it

fits. Otherwise, close batch Bi and set τ = τ − 1. If still τ ≥ 2, assign j to Bi+1.
5. τ ≥ 2, pj > (1+α)/2: let Bi be the open batch with largest index. Assign j to Bi if it fits.

Otherwise, close batch Bi and set τ = τ − 1. If still τ ≥ 2, assign j to Bi−1.
6. τ = 1: assign j to the last open batch if it fits.
7. μ ≥ 2: assign j to Mmin, close Mmin and set μ = μ − 1.

Let β = 1 + α − 1
2α ≈ 0.7304. It can be easily seen that

α = 1

4αβ
. (6)

A formal description of Phase 2b of the algorithm is
depicted in Fig. 3.

Steps 4 and 5 of Phase 2b ensure that there is an r ≤ k′
such that only items with weights smaller than or equal to
(1 + α)/2 are assigned to batches B1, . . . ,Br−1 and only
items with weights greater than (1 + α)/2 are assigned to
batches Br+1, . . . ,Bk′ . If there is a last open batch to which
items are assigned in Step 6, then it is batch Br . Note that
batch Br is the only batch in which possibly items of all
weights can be assigned.

The priority rules of Phase 2b are based on the following
ideas: An item which is not put into bins Mmax and M2, has
weight greater than β. Hence, whileμ ≥ 2 only items greater
than β are assigned to batches B1, . . . ,Bk′ . It can be shown
that when in Step 7 an item is assigned to Mmin, each bin of
the batches contains an item greater than β and all batches
except from batchBr are closed. This yields an improvement
of the lower bound and guarantees that any item fits when
assigned during Step 7 (see Lemma 5).

In order to assure that the small bins in batches Br+1, . . . ,

Bk′ have weight greater than (1 + α)/2, the possible tiny
bin is put in batch B1. The structure of the batches (three
small bins and one empty bin) and the separation into
batches B1, . . . ,Br−1 and Br+1, . . . ,Bk′ , guarantee that
these batches have each average weight greater than 1 when
they are closed (see Lemma 4). Altogether, we will show that
the average weight of all closed bins is greater than 1 and any
item which is assigned to a bin, fits in that bin. By Corollar-
ies 1 and 2, Phase 2b can only fail when an item cannot be
assigned in Steps 1 to 7. But this means that we have at most
one open M-bin and the only open batch is batch Br . This
case is treated in Theorem 1.

The following lemmas contain several properties which
hold for Phase 2b. We start with a simple technical lemma

concerning the weights of the bins in one of the batches
B1, . . . ,Bk′ .

Lemma 3 (a) If an item does not fit in the two bins B1, B2

of a batch, then w(B1) + w(B2) ≥ 3
2α + 1 ≈ 1.878.

(b) If an item does not fit in the three bins B1, B2, B3 of a
batch, thenw(B1)+w(B2)+w(B3) ≥ 9

4α+ 3
2 ≈ 2.816.

Proof By Observation 1 at least one item can be assigned to
each bin of a given batch without exceeding the capacity. The
first item which does not fit in bin B1 is put in bin B2 by First
Fit. Since bin B2 is not tiny, the weight of B2 is greater than
α/2 at the beginning of Phase 2b, we get w(B1) + w(B2) >

1 + α + α/2 = 3
2α + 1. This shows (a).

By (a) the weight of at least one of the bins B1 and B2

is greater than 1
2 (

3
2α + 1). We denote this bin by B ′

1. The
other bin shall be denoted by B ′

2. The first item which does
not fit in B ′

1 and B ′
2, is assigned to B3. Since the weight of

B3 is greater than α/2 at the beginning of Phase 2b, we get
w(B ′

1) + w(B ′
2) + w(B3) > 1

2

(3
2α + 1

) + (1+ α) + α/2 =
9
4α + 3

2 . �	
The next lemma shows that in average all closed bins have
weight at least one.

Lemma 4 (a) All bins closed in Steps 2 and 3 have weight
at least one.

(b) The average weight of each of the closed batches
B1, . . . ,Br−1 is greater than 1.

(c) The average weight of each of the closed batches
Br+1, . . . ,Bk′ is greater than 1.

(d) The weights of all bins closed in Step 7 are greater than
1.

Proof By definition all bins closed in Step 2 have weight
at least 1. Note that an M-bin never exceeds a weight of 1
unless it is closed. This follows from the fact that M-bins are
closed because their weight is at least 1 (Step 1) or because
an item is assigned to it (Steps 3 and 7). If bin M2 is closed
in Step 3, then j did not fit in Mmax, i.e., Mmax is open and

123

J Sched (2015) 18:623–630 629

w(Mmax) < 1. Hence, p j > α andw j (M2)+ p j > α+α >

1 This shows (a).
Each batch Bi , i ≤ r − 1, contains four bins B1, . . . , B4.

Let B ′
1 the bin with largest weight among B1 and B2, and B ′

2
the other bin. According to Lemma 3(a) w(B ′

1) > 3
4α + 1

2 .
Since the weights of the items put into batch Bi are at most
(1 + α)/2, at least two items x1, x2 are put in the empty
bin B4. Both of them did not fit in B ′

2 and B3 which implies
w(B ′

2) + px1 > 1 + α and w(B3) + px2 > 1 + α. We get

w(B ′
1)+w(B ′

2)+w(B3)+w(B4)>
3

4
α+ 1

2
+2(1+α) > 4.

Thus, (b) holds.
Only items with weight greater than (1 + α)/2 are put in

batches Bi , i ≥ r + 1. If i ≤ k, Bi consists of four bins B1,
B2, B3, B4. Since batches Bi , i ≥ r + 1, contain no tiny bin,
the weights of the bins B1, B2, B3 are all greater than α/2.
By Observation 1, an item fits in each of the four bins. We
obtain

w(B1)+w(B2)+w(B3)+w(B4)>3 · α

2
+ 4(1 + α)/2 > 4.

If k′ = k + 1, Bk′ consists of λ small bins, 1 ≤ λ ≤ 3, with
weight greater than α/2 each. Thus, after assigning items
with weights greater than (1 + α)/2 the weights of each of
these bins are at least α/2+ (1+ α)/2 = α + 1/2 > 1. This
shows (c).

Since p j > β = 1+ α − 1
2α , we have w j (Mmin) + p j >

α + β > 1 and (d) is shown. �	
Corollary 1 The average weight of all closed bins is greater
than 1.

Proof The assertion follows directly from Lemma 4. �	
Lemma 5 Supposeμ ≥ 2 and assume item j is not assigned
during Steps 2 to 6. Then, the following properties hold:

(a) All batches except from batch Br are closed.
(b) Each bin belonging to a batch contains an item with

weight greater than β.
(c) LB ≥ min{2w j (Mmin), 2β}.
(d) Item j fits in Mmin.

Proof Assertion (a) follows directly from the structure of the
algorithm.

As a consequence of Step 3 of Phase 2b, while μ ≥ 2, the
weights of all items assigned to the batches during Phase 2b
are greater than or equal to β and (b) holds.

Since j is not assigned in Steps 4 to 6 and byObservation 1
each bin of the batches contains an item whose weight is
greater than β. By Lemma 1(e) all bins which are closed

after Phase 1 contain a large item, which is greater than β by
definition.

Let Mmin = M�′ , �′ ≤ �, at time j . All of the bins
M�′+1 . . . , M� contain an item greater thanβ at time j . These
items have been assigned in earlier iterations when these bins
served as Mmin.

At time j bin M�′ is Mmin and contains a single medium
item i and bins M1, . . . , M�′−1 contain medium items which
are not smaller than w j (Mmin) = pi . If w j (Mmin) ≥ β,
there are m + 1 items greater than β including item j . Oth-
erwise, if w j (Mmin) ≤ β, there are m + 1 items greater
than w j (Mmin). By applying (2) with LB ≥ qm + qm+1, (c)
follows.

In order to show that j fits into Mmin we distinguish two
cases. Ifw j (Mmin) ≥ β, we have LB ≥ 2β. Hence, using (6)
follows

p j +w j (Mmin)≤ LB+ 1

2α
≤ LB+ 1

2α

LB

2β
=(1 + α)LB.

If w j (Mmin) ≤ β, we have LB ≥ 2w j (Mmin) and we get

p j + w j (Mmin) ≤ LB + LB

2
≤ (1 + α)LB.

This shows (d). �	
We are now able to show that during Phase 2b no bin has

weight exceeding (1 + α)LB.

Corollary 2 When an item is assigned to a bin during Phase
2b, it always fits in the bin.

Proof In Steps 2 and 6 an item is only assigned to a bin if it
fits. We have to consider Steps 3, 4, 5, and 7. Assume item
j is assigned to bin M2 in Step 3 of the algorithm. We have
w j (M2) + p j ≤ 1

2α + β = 1
2α + 1 + α − 1

2α = 1 + α.
Consider the case that j is assigned to batchBi+1 in Step 4.

Since τ ≥ 2, Bi+1 �= Br and j is the first item assigned to
Bi+1 during Phase 2b. Since each bin B of Bi+1 is small
or empty, j fits in B because of Observation 1. Step 5 is
analogous to Step 4. Because of Lemma 5(d) every item
assigned in Step 7 fits in Mmin. �	
We are ready to prove our main theorem.

Theorem 1 The presented algorithm is (1+ α)-competitive
for the known total processing time scheduling problem.
Moreover, the bound is best possible if the number of
machines tends to infinity.

Proof In order to prove the theorem, we have to show that
(i) all items are assigned to bins and that (ii) all items fit into
the bins. We will prove these properties with respect to the
Phases 1, 2a, and 2b.

123

630 J Sched (2015) 18:623–630

Recall that Phase 1 is well defined, i.e., due to Lemma 1(g)
items can be assigned to empty bins and (i) holds. By
Lemma 1(a) the weights of all bins closed in Phase 1 are
at most (1 + α)LB, i.e., (ii) holds.

By definition all items are assigned in Phase 2a. In particu-
lar, if there is only one open bin left in Phase 2a, all remaining
items are packed in this bin. By Lemma 2(d), the weights of
all bins are at most (1 + α)LB. This implies (i) and (ii) for
Phase 2a.

Corollary 2 shows all assigned items fit into the corre-
sponding bins during Phase 2b which is equivalent to (ii).
Assume that (i) is not true for Phase 2b. Hence, there must
be an item which cannot be assigned to any of the bins, i.e.,
the algorithm stops without assigning the item. Let this item
be denoted by j . Item j together with the remaining items
arriving after j , shall be denoted by R j .

While μ ≥ 2, each item which cannot be assigned during
Steps 2–6 of Phase 2b, is automatically assigned in Step 7
to an M-bin. Hence, μ ≤ 1, if the algorithm stops. While
τ ≥ 2, each item which cannot be assigned during Steps 2
or 3 of Phase 2b, is assigned either in Step 4 or in Step 5 to
a batch. Consequently, we must have μ ≤ 1 and τ ≤ 1 at
time j .

By definition and Lemma 5(a) only bin Mmax and batch
Br are possibly not closed at time j .

Consider τ = 0. Since batch Br is never closed in Step 6
of Phase 2b, the only possibility is that there are no batches at
the beginning of Phase 2b. This implies that there are no small
bins at the beginning of Phase 2b. But this case is considered
in Phase 2a. Hence, we assume in the following that τ = 1.

Consider μ = 0. We will show that the items of R j fit
in batch Br which is a contradiction to the assumption that
the algorithm stops at time j . If Br consists of four bins
B1, . . . , B4,we have byLemma3(b) thatw j (B1)+w j (B2)+
w j (B3) ≥ 9

4α + 3
2 ≈ 2.816. Because of Corollary 1 the

average weight of all closed bins is greater than 1. Therefore,
w(R j) ≤ 1.2 and the items of R j fit in B4.

The proofs for less than four bins are analogous: If Br

consists of three bins, we have by Lemma 3(a) thatw j (B1)+
w j (B2) ≥ 3

2α + 1 ≈ 1.878. By Corollary 1 we get that
w(R j)+w j (B3) ≤ 1.2 and the items of R j fit in B3. For two
bins we have again by Lemma 3(a) thatw j (B1)+w j (B2) ≥
3
2α + 1. By Corollary 1 we get that w(R j) ≤ 0.2 and the
items of R j fit in the bin with smaller weight. For one bin
the assertion is obvious.

Finally, consider μ = 1 and τ = 1. Assume Br consists
of four bins B1, . . . , B4. An item was put in B4 since it did
not fit in B3. Thus, w j (B3) + w j (B4) > 1 + α. Hence by
Lemma 3(a) we have

w j (B1) + w j (B2) + w j (B3) + w j (B4)

>
3

2
α + 1 + 1 + α ≈ 3.46.

Corollary 1 implies that w(R j) < 0.5 and the items of R j fit
in Mmax. For two and three bins in Br the assertion follows
with Lemma 3(a) and Lemma 3(b), respectively. Assume Br

consists of a single bin B1. By Observation 1 the weights
of the bins B1 and Mmax are each greater than α with total
weight being equal to 2α + δ for some δ ≥ 0. Thus, the total
weight of the items in R j is at most 2− 2α − δ and they can
be assigned to the bin with smaller weight since

(2α + δ)/2 + 2 − 2α − δ = 2 − α − δ/2 < 1 + α.

This completes the proof of our main theorem. �	
Acknowledgments The authors are grateful to two anonymous refer-
ees for their helpful commentswhich helped to improve the presentation
of the paper a lot. The research of the second author has been par-
tially supported by Belarusian BRFFI Grant (Project F13K-078). The
research of the third author has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025) and by BRFFR-PICS project
(PICS 5379).

References

Albers, S. (2013). Recent advances for a classical scheduling problem,
In Automata, languages and processing, Lecture Notes in Com-
puter Science (Vol. 7966, pp. 4–14). Berlin: Springer.

Albers, S., & Hellwig, M. (2012). Semi-online scheduling revisited.
Theoretical Computer Science, 443, 1–9.

Angelelli, E., Nagy, A. B., Speranza, M. G., & Tuza, Z. (2004). The
on-line multiprocessor scheduling problemwith known sum of the
tasks. Journal of Scheduling, 7, 421–428.

Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Com-
puter Science, 268, 17–41.

Böhm,M., Sgall, J., van Stee, R., &Veselý, P. (2015). Better algorithms
for online bin stretching. InApproximation andOnline Algorithms,
Lecture Notes of Computer Science (Vol. 8952).

Cheng, T. C. E., Kellerer, H., & Kotov, V. (2005). Semi-on-line multi-
processor scheduling with given total processing time. Theoretical
Computer Science, 337, 134–146.

Faigle, U., Kern,W., & Turan, G. (1989). On the performance of on-line
algorithms for partition problems. Acta Cybernetica, 9, 107–119.

Fleischer, R., &Wahl, M. (2000). On-line scheduling revisited. Journal
of Scheduling, 3, 343–353.

Graham, R. L. (1966). Bounds for certain multiprocessor anomalies.
Bell System Technical Journal, 45, 1563–1581.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies.
SIAM Journal of Applied Mathematics, 17, 263–269.

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approxima-
tion algorithms for scheduling problems: theoretical and practical
results. Journal of the ACM, 34, 144–162.

Kellerer, H., & Kotov, V. (2013). An efficient algorithm for bin stretch-
ing. Operations Research Letters, 41, 343–346.

Kellerer,H.,Kotov,V., Speranza,M.G.,&Tuza, Z. (1997). Semi on-line
algorithms for the partition problem.Operations Research Letters,
21, 235–242.

Rudin, III J. F. (2001). Improved bounds for the on-line scheduling
problem. Ph.D. thesis, University of Texas

123

	An efficient algorithm for semi-online multiprocessor scheduling with given total processing time
	Abstract
	1 Introduction
	2 Problem definition and notation
	3 Description of the algorithm and proof of the upper bound
	Acknowledgments
	References

